

BluE ESS Product Introduction

PART 01 Residential Energy Storage Solution Powering Green Future

All-in-One Residential Storage System Single Phase

All-in-One Residential Storage System Three Phase-10K

Safety

DO/DI SUPPORT

200% DC/AC ratio

Installation

Unbalanced ouput

Hybrid Inverter: E10KT

Battery Pack: BluE-PACK5.1, expandable to 40.8KWH

07

Battery compatibility Single phase and three phase inverters share the same battery pack

EXERCISE Powering Green Future Battery Cell	CATL	Battery Module	
ITEM	SPECIFICATION	ITEM	SPECIFICATION
Capacity	100Ah @ 25°C, 0.5C	Cell	LFP-100Ah
Nominal voltage	3.2V	Nominal Energy	2.56kWh@25°C, 1P8S
Dimension(W×H×D)	200.3×172.2×33.2mm	Rated Voltage	25.6V
Weight	2.27±0.30Kg	Voltage Range	Min:20V Max:28.2V
Impedance(1kHz,BOL,40%SOC)	$0.15\pm0.06m\Omega$	Weight	21ka
Reversible capacity loss	< 3.5%	Dimension	303*187.5*203mm
(25°C,100%SOC/month)		Operation Temperature	Min:0°C Max:50°C
Operation temperature	-30°C ~ 60°C	Cooling Method	Air Cooling
Storage temperature	-30°C ~ 60°C	Humidity	$0\% \sim 95\%$ No condensing
Certification	IEC 62619,UL1973, UL9540A,UN38.3 <u>11</u>	Tannaty	070~3070, NO CONCENSING

- 1. Battery module
- 2. BMS
- 3. Communication interface board
- 4. Positive and Negative fuses

*Heater can be optional which in the module

- 1. Battery Negative terminal
- 2. Battery Positive terminal
- 3. Earth terminal
- 4. Communication and DIP

ITEM	SPECIFICATION			
Cell	LFP-100Ah			
Nominal Energy	LFP-100Ah gy 5.12kWh@25°C, 1P16S e 51.2V e Min:40V Max:58.4V 48kg 490mm(H)*540mm(W)*240mm D) pe Min:0°C Max:50°C			
Rated Voltage	51.2V			
Voltage Range	Min:40V Max:58.4V			
Weight	48kg			
Dimension	490mm(H)*540mm(W)*240mm(n			
Dimension	D)			
Operation Tempe	Min:0°C Max:50°C			
rature				
Cooling Method	Air Cooling			
Humidity	0%~95%, No condensing			
	Cell:IEC 62619,UL1973,UL9540			
Cetification	A,UN38.3			
	Pack:IEC 62619,UN38.3			

Energy Management System

Cloud Platform

Connects all the ESS systems and enable monitoring, smart control, power transaction and ancillary service.

Lifespan free access to monitoring via Web and APP

Remotely control and build VPP

Support upgrading the new function and latest version remotely.

Battery Management System

High SOC accuracy

LFP SOC estimation error < 3%, accuracy up to 97%.

Comprehensive protection

3-level software protection.

Redundant hardware level protection

Functional safety

Comprehensive and optimized protection including multiple monitoring items, hardware alarm system, multiple protection

Energy Management System

Multifunctional and powerful

Local absorbition, reducing PV power abandonment Peak and frequency regulation PV power self –consumption Load shifting Backup power supply, UPS/EPS Peak shaving Micro/Off-grid control Demand charge management

Highly compatible

Enabling external control through SCADA, MOUDBUS, ETHERNET etc.

Safety

Safety control designs.

Certificate

ITEM	Certificate				
Safety	IEC62109-1(ed.1),EN62109-1:2010,IEC62109-2(ed.1), EN 62109-2:2011				
Environmont	IEC 60068-2-1:2007, IEC 60068-2-2:2007				
Safety Environment EMC Efficiency urope Grid Connection South Africa UK Belgium Germany France Australia Ireland	IEC 60068-2-14:2009, IEC 60068-2-30:2005				
EMC	IEC/EN61000				
Efficiency	IEC 61683:1999				
urope Grid Connection	EN 50549-1				
South Africa	NRS 097-2-1: 2019				
UK	G98 G99				
Belgium	C10/11				
Germany	VDE-AR-N 4105:2018, VDE 0124:2020				
France	VDE0126 VFR				
Australia	AS4777.2				
Ireland	NI				
	Next: Part 2 Applications				

PART 02 Applications Powering Green Future

DC-coupled Solution

Typical application for new installations-----Energy is concentrated on the DC side

AC-coupled Solution

Retrofit application----Energy is concentrated on the AC side

Hybrid-coupled Solution

For retrofit and PV expansion

Installing System In Parallel

For single phase system

Next: Part 3 working modes

PART 03 Working modes Powering Green Future

Work Mode—Self Consumption

Strategy: PV generation meets the demand of the loads in priority. **Purpose**: Cut electricity bill by minimizing the energy consumption from the grid.

PV>Load	PV supports load, PV charge the Battery
PV <load, bat<="" low="" td=""><td>PV+Grid supports Load</td></load,>	PV+Grid supports Load
PV <load, bat<="" sufficient="" td=""><td>PV+battery supports Load</td></load,>	PV+battery supports Load
No PV, low BAT	Grid supports Load

Work Mode—Battery Priority

Strategy: PV generation and Grid meet the demand of battery charging; Battery discharges only after grid failure in order to reduce life cycles of battery.

Purpose: Ensure the UPS function of the system.

PV supports load, PV charge the Battery
PV+Battery supports Load
PV supports the load, remaining go to Grid
Gird+PV support load

Work Mode—Load Shifting and Peak Shaving

Reduce your electricity bill by storing electricity during off-peak time and shift energy to be used at peak time.

Strategy: Battery control of charging/discharging can be preset depending on the period of valley-peak, Battery is charged at the maximum power.

Purpose: Planning load curve and dispatch order from grid aggregator.

Avoid the increase of import capacity to supply the peaks of a variable load. Energy storage provides a fast response and emission-free solution.

Price is cheap	Charge battery
Price is high	Discharge battery

PART 04 BluE ESS Highlights Powering Green Future

CATL Battery Performance

CATL Battery Safety---LFP

CATL Battery Safety---Triple Level Design

100Ah Cell

HE STANDARDS INSTITUTION OF IS

SII Cush & Nail

Standards

Institution of

Israel

Comply with GB/T18384 electric shock protection requirements

Module Level

- Comply with UL94-V0 flame retardant requirements and latest national standard
- Comply with the requirements of GB/T31467.3-2015 combustion of 130sec

PACK Level

- Thermal management, control battery temperature rise (≤10°C)
- High performance BMS, comprehensive protection including over/under voltage, over current, short circuit, high and low temperature
- Positive and negative double fuse design meets the Australian AS4777 safety standard

- Battery connection abnormal protection
- Triple protection with thermomagnetic switch, MOSFET high speed switch, fuse
- System leakage protection, insulation monitoring, overload and short circuit protection

CATL Battery Reliability-Manufacturing

CATL Intelligent Manufacturing System

KSTAR CATL Battery Safety -Reliability

Comprehensive Test & Validation

Date Sources: SNE Research

CATL Battery Long Life

Self-healing Technology

Optimize Anode/ Cathode/ Electrolyte

Graphite with Self-healing Structure (Volume ED≥350Wh/L)

Martial Coating

CATL Long Life Product

Long Life

Case Study

Jinjiang Megawatt-scale BESS Station 30MW/108MWh

- Provide peak load shifting and frequency regulation services for substations.
- The first BESS project whose life is more than 12,000 cycles.

- Enble to integrate with a genset for a PV+ESS+Grid+Genset micro grid system.
- Max 4 parallel installations for both on-grid and off-grid output

* The off-grid parallelling function is available at Q2 2023

Easy Installation----Labor Saving

Saving 50% installation time

Installation in half an hour, wiring in one hour. Quick plug connection design ,free from on-site wiring.

Handled by single person

One module is less than 50kg, which can be handled by single person.

Installed by single person

stacked and installed by single person.

Minimum cover

0.6M*0.25M (0.15 square meters)

All-in-one Design

Split Type

Consist Residential Energy Storage System is Composed of Hybrid Inverter Module and Battery Pack Module

Kstar BluE ESS

Other Supplier

KSTAR Green Future All-in-one Design

- A Integrated distribution
- Integrated design and quick plug connection
- Plug and play, free of adjusting the inverter and battery together.

Split Type

- A Making unsightly cables on the spot
- Power distribution and installation
- Adjust the inverter and battery together

Interconnect – Online Monitoring

WiFi Plug or 4G Plug optional, Real-time online monitoring from anywhere at anytime by APP or PC Web.

The solution is designed to monitor load energy consumption in real time for 24 hours.

Based on the best design principles, the monitoring system is tailored to the needs of the home and requires only an internet connection. The data collected is stored in the cloud by Wi-Fi or 4G.

The end users benefit by achieving a better understanding of their electricity consumption and the source from which it is generated.

Interconnect – Smart Home Energy Management System

Solarman Smart Home System of BluE ESS is an open protocol monitoring platform. It is designed to help operators to monitor a diverse range of PV plants operating at different places simultaneously.

It carries extensive data processing, including the production of customized charts. Its system of notifications and maintenance functions help the operators of PV assets to manage the generation of energy efficiently and comfortably, contributing to higher system yields.

Interconnect – VPP – TOU(Time of use)

FOU Scheduler + Ir	nvalid	*		
Date Of TOU Schedule	00:00	✓ — 00:	00	\sim
Charge Power	0	0~100	kW	
Discharge Power	0	0~100	kW	
Charge Time 1	:			\sim
Discharge Time 1	:	> -:		\checkmark
Charge Time 2	:	\		\sim
Discharge Time 2	:	~ - :		\sim

VPP Revenue :Benefit from the electrical price difference

Ancillary services : The combination of several flexible production and consumption units, controlled by a central intelligent system, is the core of VPP which can stabilize the grid by balancing frequency and voltage.

Electricity arbitrage : Optimize trading strategies to maximize returns. VPP can utilize the aggregated

power to react to changes of the electricity price on

the exchanges, quickly adapting to the existing supply of power in the grid, and thus execute trades.

Interconnect – VPP – Electrical Demand and Price Forecast

example: capture the information on Australian Energy Market Operator)

Interconnect – VPP –Smart Grid, providing voltage and frequency regulation service

PP-Batch Set Site Contro	ol Smart Grid De	evice Import				
New York						
Jode: 澳洲						
	1/2.	0~6600		1/2.	0~6600	0/
		105~130		V 2.	70~95	/0
Synchronization	P2:	0 W		P2:	0	W
		0~6600			0 ~ 6600	
Ramp Rate	Response Time:	0 m	S	Response Time:	0	ms
		0~20000			0~20000	
Voltage Ride Through	Over Frequency			Under Frequency		
	Start Frequency:	0.00 Hz	z	Start Frequency:	0.00	Hz
Frequency Ride Through		50.00 ~ 65.00			40.00 ~ 60.00	
	Gradient:	0.0 %/	'Hz	Gradient:	0.0	%/Hz
Active Power Control		0.1 ~ 100.0			0.1 ~ 100.0	
	Response Time:	0 m	S	Response Time:	0	ms
Reactive Power Control		0~20000			0~20000	
			0-			

